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Stability loss delay in a Ziegler system is considered, on the assumption that the follower force is slowly increasing. An
“input-output” function is constructed, enabling the time at which stability loss occurs to be predicted, given the initial magnitude
of the force. © 1997 Elsevier Science Ltd. All rights reserved.

A delay in the loss of stability when the parameters are varied slowly was first observed for a model
system [1]. A theory of the effect has been constructed for quite general systems [2-6]. Below we will
consider the effect of a slow variation of the parameters on the dynamics of a modified Ziegler system
[7]. Previous investigations of a Ziegler system using methods of classical bifurcation theory enabled
many paradoxical features of non-conservative mechanical systems loaded by follower forces to be
explained [8, 9].

We note that stability loss delay is not associated with the presence of any active controls that keep
the system in the neighbourhood of an unstable steady state (cf. 10]).

1. DESCRIPTION OF THE SYSTEM. EQUATIONS OF MOTION

We define a Ziegler system to be a two-dimensional hinged-rod mechanical system with two degrees
of freedom subject. to a slowly increasing follower force P (Fig. 1). It is assumed that when the rods are
horizontal the springs in the hinges are in their natural, undeformed, state. The rods, all of the same
length I and bearing point masses of masses M and m, are assumed to be weightless.

As generalized coordinates of the system we use the angles @, and ¢, by which the rods deviate from
the horizontal.

The dynamics of the system is described by the Lagrange equations

_‘.i.[-a_T]__aI_.'..a_U:__ag?_.'.Qk’ k=12
dt a(Pk .
11
T=1{(m+ M)} + m@,[2cos(¢; - 9;) P, + ¢, 1} /2
uv=U,+U,, Ug=gl[(m+M)sin(p,+msin(p2]

U, = c{@? (1+807)+(9, — 92)*[1+8(9; —9,)*1} /2
@ = B[+ (¢, - §,)?1/2

where T is the kinetic energy of the system, U is its potential energy, which is the sum of the gravitational
energy U, and the energy of elastic deformation of the hinge springs U, (c is the stiffness of the springs,
d is a parameter defining the non-linearity of the elastic properties of the springs, and g is the acceleration
due to gravity), @ is the dissipative function, which characterizes the dissipation of energy in the springs
(b is the coefficient of dissipation), and Q; and O, are generalized forces generated by the non-
conservative follower force P.

The angle between the line of action of P and the horizontal is proportional, with coefficient ¥, to
the angle of deflection of the second rod (0 < i = 1). Follower forces of this type were considered, for
example, in [11].

Formulae for the generalized forces may be found by computing the virtual work of P
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8A = (P,0r, )= 08¢, + 0,09,; O, = (P’ gr,,, )
P

After reduction we obtain
O =—|Plsin(x9;, - 9;), @, =—|Plsin(x - 1o,
As an independent variable it is convenient to take dimensionless time © = #/l(c/m)'2. This enables
us to rewrite the Lagrange equations (1.1) as follows:
(1+ )P+ cos(@, — @) P, +sin(Q, — @) F+B(2¢, - ;) + (12)
+20, =9, +28(0] +(9, ~92)’ 1+ (1 + ) cos @, + psin(x9, ~9,) =0
cos(P; = @) §;+ B, = sin(@; ~ 9,) 9} +B(9,~ )~
~(@y = @2)[1+28(9, = 9;)* ] +2xc0s 9 + psin(x —1)p, =0
%
m=M/m, n=lgmic, P=b/l(mcy?, p=|P|l/c)
The dots in (1.2) and below denote derivatives with respect to dimensionless time 7.

Remarik. The term “Ziegler system” is generally used for a simpler mechanical system, obtained from the above
by settingx = 1,8 = » = 0 [7-9].

2. STABILITY LOSS DELAY IN A ZIEGLER SYSTEM

If the magnitude p of the dimensionless follower force is fixed, system (1.2) has a family of steady
solutions

(bl = ¢2 = 0 (2.1)
(P| = (P|o(7‘»B,8, usx, P), (Pz = (4p20(xv B’S!u”x’ P)

which, when % — 0, tend to the trivial solution ¢, = ¢, = ¢, = ¢, = 0.

If p < p.(», B. 8, p, ), the solutions (2.1) are asymptotically stable; we will denote their domains of
attraction in the phase space of the system by D(x, B, 8, , %, p)-

One can define in the parameter space (x, B, 9, u, %) domains §; and S, with the following properties:
if the parameters lie in S, then when p = p,, one of the roots of the characteristic equation of system
(1.2), linearized in the neighbourhood of the stationary solution (2.1), is zero. If the parameters lie in
S§,, then when p = p,, a pair of roots of the characteristic equation lie on the imaginary axis.

Let us consider a Ziegler system with parameters in S, in which the magnitude of the follower force
is slowly increased

p=p;+et, 0<e<l, 0=<p,<p, (%B.5,nx) (22)
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In that case the phase trajectories of system (1.2) corresponding to initial conditions
(9,(0),0,(0)) € B(%,B,8,1,%, p;)

/I
2 -
{El 020+ (9, (0) — 90 (.B.8,11,%. p; ))2} ~1

will remain after the transient in an O(g)-neighbourhood of the stationary solution of the instantaneous
system (the system with fixed p equal to the latter’s current value) until the follower force reaches a
certain value pg, which depends on p; and exceeds p,, by a quantity of order 1; when that occurs the
system will break away from the steady solution—there w1ll be a rapid development of oscillations [2-6].
Thus, the stability loss is “delayed”: for a long time (~ ™) the phase trajectories will not leave a small
nelghbourhood of the unstable solution.

Numerical integration of Eqs (1.2) confirms the existence of a stability loss delay when the follower
force is slowly increased.

As an example, Fig. 2 shows how the behaviour of one of the generalized coordinates of a Ziegler system with
parameters x = 0.1, 3 = 30.0, 3 = 1.5, u = 1.0, x = 0.8 depends on the current value of the follower force (note
that when € # 0 the ragnitude of the follower force may serve as “slow time” in system (1.2)). The computations
were carried out for the following mma] values of the follower force: 2.75, 2.25, 1.5, 0.5 (Fig. 2a—d). In all cases
the parameter was taken as € = 107>, The curve § in Fig. 2 is the value of @, in the stationary solution (2. 1) of the
instantaneous system; the vertical dashed line indicates the critical value of the follower force p., = 3.636 at which
the steady solution (2.1) destabilizes and a stable limit cycle is formed (Andronoff-Hopf bifurcation).

The computational results shown in Fig. 2, imply the following conclusion: the longer the trajectories are in a
neighbourhood of a stable steady solution, the longer they will stay in the neighbourhood of the unstable solution.
However, at a certain value of the follower force (=5.5), oscillations will develop regardless of the time the phase
trajectory spends in the neighbourhood of the stable solution.

In systems with parameters in §;, there will be no delay of stability loss. Such systems will not be considered
below.

3. INPUT-OUTPUT FUNCTION

We define the breakaway time to be the time T at which the phase trajectory first leaves the €°-
neighbourhood of an unstable steady solution of the instantaneous system (0 < ¢ < 1).
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The input-output function II(-) relates the value of the follower force at t = 0 and its limiting value
(as € — 0) at the time the phase trajectory breaks away from the steady solution for most initial data

(0 (0), 9(0)) € B(x, B, 3, u, X, p:), such that

)
2
{E‘ ‘Plzz (0)+(9(0) — @y (2, B, 3, 0, X, p; ))2} >e°

It should be noted that the limiting value does not depend on o.

To construct the input—output function, one has to study certain properties of the roots of the
characteristic equation of system (1.2), linearized in the neighbourhood of the steady solution of family
(2.1), for complex values of the parameter p [4, 5].

Let A,(p) be one of the two roots of the characteristic equation, which lie on the imaginary axis when
P = pe We will assume that Im A(p,,) < 0.

We introduce the complex phase

4
Y(py= | M(pdp’ (3.1)

Per

In the general case, ¥(p) is a many-valued function of a complex variable. Its typical branch points
will be points at which the root A; vanishes or becomes multiple. We will consider the branch of ¥(p)
obtained by analytic continuation from the real axis.

Bearing in mind the position of the level curves Re W(p) = const in the complex p-plane, we will
express the interval I = [0, c.,] as the union of an interval I; containing p.,, defined as the set of all
points of the interval on level curves of Re ¥(p) that intersect the real axis twice (to the right and left
of p..), and the interval I} = N,

On [ the input—output function maps p onto the point I1(p) on the real axis to the right of p,, such
that

Re¥(p) = ReW(I1(p)) (3.2)

If the independent variable in system (1.2) with e # 0 is taken as the magnitude of the follower force,
it can be proved, by analytic continuation-alpng a path near the arc joining p and I{p) on a level curve
of Re ¥(p), that the solution for which thé initial value of the follower force is p will leave an O(g)-
neighbourhood of the unstable solution when the follower force reaches a magnitude differing from
I1(p) by a quantity of the order of ¢|In g| [4].

The behaviour of I(-) in the interval I; is determined by the nature of the singularity of the function
¥(p) that obstructs the continuation of the family of arcs of level curves that cut the real axis twice and
shrink to p,, in the limit.

Let p = u + iv. The curves Re ¥(u + iv) = const are phase trajectories of the system

dulds=-ImA, /M|, dv /ds=~Red, /[A | (3.3)

where the independent variable s is a natural parameter of the curve. In complex form, system (3.3)
may be written as dp/ds = —iA/|A4].

By numerical integration of system (3.3), one can determine the position of the level curves
Re ¥(p) = const in the complex p-plane.

In the neighbourhood of branch points, the pattern of the level lines becomes fairly complicated
(Section 6, Examples 2 and 3). Therefore, for a correct interpretation of the computational results, one
must have some idea of the typical behaviour of the level curves in that case (Sections 4 and 5).

For some parameter values of Ziegler systems one can find approximate expressions for the roots of
the characteristic equation of the linearized system and obtain explicit formulae for the input-output
function (Section 6, Example 1).
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4. BEHAVIOUR OF LEVEL CURVES IN THE NEIGHBOURHOOD OF
A BRANCH POINT DUE TO THE MATRIX OF THE LINEARIZED
SYSTEM HAVING MULTIPLE EIGENVALUES.

Consider the following system of differential equations depending on the complex parameter p
dz!d{=F(z,p), {eC' zeC" 4.1)

Let zy(p) be a steady solution of system (4.1). Linearizing system (4.1) in the neighbourhood of this
steady solution, we: obtain

dw oF
d—C=HW(R)W(w=z—20(p), Hw(p)=a—z(Zo(p),p) (4.2)
In the general case, the eigenvalues A,, . . ., A, of the matrix H,(p) are simple and only at special,

isolated values of p does one obtain matrices with one double eigenvalue associated with a Jordan cell
of order 2 [12, p. 222]. Denote the set of such numbers p by I'.

Suppose that p,. € T we have A(p,) = Ax(pey) = Ag # 0. It follows from the normal form theorem
for matrices dependent on a parameter [12, p. 217] that for p in some neighbourhood of p,, there is a
linear change of variables v = W(p)w, where W(p) is a non-singular matrix whose coefficients are analytic
functions of p, that transforms system (4.2) to a linear system with matrix

Ay O
Hu (P) =

Ao 1
Ao =

a(P‘Per)+O(|P‘P¢r |2) A'0 +b(P‘Per)+0(|P"P¢r |2)

A, =diagA3(p).... A, (P))

The eigenvalues A;(p), A(p) are the roots of the characteristic equation det(Ay — AE) and may be
expressed in the neighbourhood of p, as

)“1,2(p) = A'0 x a(p— per) + O(lp— perl)

As p,, describes a closed contour, A;(p) and A,(p) are interchanged.

To simplify the subsequent calculations, we change in (4.1) to a new independent variable & = Ay{.
After this change the multiple eigenvalue of H(p,,) will equal one.

Define a complex phase

32
)

14 2
‘{’(P) = I A'I(p,)dp, = (P— per)+§a(p_ Per + 0(|P" Per |2)

Per

where o = V(a)/Aq.

Let ¥(p) = ¥(p,, + p2), p € CL. The transformation p = p,, + p? takes the level curves of the function
Re ¥(p) into those of Re ¥(p).

The condition Re ¥(p) = const may be rewritten as follows:

x2 -y +%[G|(X3 —3)0’2)'*'(12()'3 =3x2y)]+ 0(x* + y*) = const
x=Rep, y=Imp, o, =Req, o,=Ima

We shall assume below that [ oy | # | o |.
Solving the equation Re (x + iy) = 0 fory, we obtain the equations of level curves passing through
the point O as shown in Fig. 3(a) (curves aa’ and bb")
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Fig. 3.
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Let.a; > | o, |. The transformation p = p,, + p? takes curves aa’ and bb’ into curves AA’ and BB’
with a cusp p., (Fig. 3a). The level curves Re ‘I‘(p) const in the sector aOb become level curves of
Re ¥(p) = const in the sector Ap..B. Level curves in the sectors aOb’ and bOa’ go into level curves in
the sectors Ap..B’ and Bp.A’ that intersect the arcs p.,4’ and p.B’, respectively. Level curves in the
sector a’Ob’ go into level curves in the sector Ap.B’ that intersect the arcs p.,4 and p.B.

Given a different relationship between o, and o, the position of the level curves of Re ¥(p) in the
neighbourhood of p,, is either that shown in Fig. 3(a) or its mirror image with respect to the vertical axis.

5. THE BEHAVIOUR OF LEVEL CURVES IN THE NEIGHBOURHOOD
OF A BRANCH POINT OF A STEADY SOLUTION

Suppose that atp = p. we have A; = 0. Applying a linear change of variables w = W(z — zy(p)), where
W is some non-singular matrix with constant coefficients, combined with a change of the independent
variable analogous to that used in Section 4, we transform system (4.1) to the system

d
._ﬂ—wl (p P.)*‘Z Z au i j+0(lp-p.HW',IW'3)
dé i=l j=2
d .1)
Sy byw; +0(p-piw®), k=2,n
dé Jj=2

where the (n - 1) X (n — 1) matrix || by; || is non-singular.
The steady solution wy(p) of system (5.1) in the neighbourhood of p- has the form

wio(p)=+p—p, +O0(p-p.))

‘ =c,(p-p)+O(p-p. %), k=2n
wo(P)=c (p—p,)+0(p-p,1"*), n
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Thus, p = p, is a branch point of second order for the function w(p).
The branching of the steady solution implies branching at p = p, of the eigenvalues of system (5.1),
the latter being linearized in the neighbourhood of that solution

3
M(p)=2\/p-p. +B(p-p,)+0(0p-p, I/z)
MDY =M () + V(P p) +OUp=p.), k=2.n

Let us consider the behaviour in the complex plane of the level curves of the function Re ‘¥(p), where

B

W(p)= | M (p)dp’ =—(p p.)/2+ Bp-p)? +00p-p, )

P

Let ¥(p) = ¥(p- + p?), 1 & CL The condition Re ¥(p) may be rewritten as follows:

8 3 3
3 =30 +B (" - 657y + y1) + 485 (07 = )]+ (x P +1y1°) = const
x=Rep, y=Imp, B, =Rep, B, =ImP

The level curves of Re ¥ = 0 are known as Stokes curves [13]. Solvmg Rc ¥+ iy) = 0 for x, we
obtain their equations

x=B,y? 18+ 00yl’)

x =23y + (B £V3B,)y* + Oy )

Let B; > V(3)| B |. Under the transformation p = p, + p%, the Stokes curves Oa, Ob, Oc, Od’,
Ob’, Oc¢’ of the function ¥(p) pass into the Stokes curves p.A, p.B, p,C, p,A’, p.B’, pC’ of the function
¥ (p) (Fig. 3b). The level curves Re ¥(p) = const in the sector aOc’ pass into level curves Re Y(p) =
const in the sector Ap.C’ that intersect the Stokes curves p-C and p.4’. Level curves in the sectors aOb,
bOc,a’Ob’, b'Oc’ pass into level curves in the sectors Ap, B, Bp,C,A'p,B’, B'p,C’ that intersect the Stokes
curves p,B’, p.C’, p.A, p.B, respectively. Level curves in the sector cOa’ pass into level curves in the
sector Cp.A’ that do not intersect Stokes curves.

The position of the level curves of Re ¥(p) in the neighbourhood of the point p = p, for other relative
positions of B; and B, is the same as that shown in Fig. 3(b) rotated by an angle of 2nk/3, where k = 0
ork==*x1.

6. EXAMPLES OF INPUT-OUTPUT FUNCTIONS
FOR ZIEGLER SYSTEMS

Example 1. When a Ziegler system has sufficiently stiff hinges, the friction in which is also sufficiently high, the
parameters of the problem satisfy the conditions

® ~E, s<[3"<l

Let us develop approximate formulae for the input—output function of such a system.
Setting x = K¢ to fix our ideas, we rewrite the equations of motion (1.2) in quasi-linear form

X=E(p)x+2, +22 (6.1)
x=1191.92.9,.9,II", Z,=0(e), Z,=0(x])
0 0 1 0
0 0 0 1
E(p)=
My hyp hyy by

hay hyy hay hgy
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hyy =-GB-p)/n, hyy=(2-p)Ip, hy3=-3B/p, hyy=2B/p
hay =1-hy;, hgy =-1+p(1-x)-h3,
hay =B—hy3, hay=-1-hy
When & = 0 system (6.1) always has a trivial steady solution x = 0. This means that we are not concerned here
with a case of general position [4].

The characteristic equation of system (6.1), linearized in the neighbourhood of the solutionx = 0 (g = 0), is
ao)\.4 +a|k3 +a2)»2 +a3l+a4 =0 (62)
ap=p, a =(5+W)PB, a =P +5+p-(uy, +2)p
ay=(2-30,p)B, ay=1-B-pxip. X1=1-2%

We have the following asymptotic formulae for the roots A4, . . . , A4 of Eq. (6.2)

M= —B"[(l—%x.p)ii,f(l—%xl)x. p}+0(ﬁ‘2)

13'4=%[—(5+u)i 25+ 6p+p? 1+0(1)

If x < 5/9 (33 = 4/9), the stability loss is due to one of the roots of Eq. (6.2) crossing from the left half-plane
into the right half-plane through zero, and there is no delay of the stability loss. We will therefore assume from
now on that y is a point in the interval (5/9, 1) (x; € (0. 4/9)).

The critical value of the follower force is found from the condition Re 4; , = 0

Per B x) =2/3% +0B™H)

Using the asymptotic formulae for A,(p) and p,, in (3.1), we obtain an approximate expression for the complex
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¥(p)=p| —-p+=xp’ -
p ﬁ[x p+ le

2' (l ——xl)xl [p —%H ©63)

The error of formula (6.3) is at most O(B?).

The formula Re ¥(p) = const defines a family of hyperbolae in the complex plane. A general idea of the behaviour
of the level curves Re W(p) = const may be derived from Fig. 4(a), which is shown for the case x = 0.8.

Note that since the steady solution does not bifurcate at the point where A, vanishes, the pattern of the level
curves is quite differcnt from that shown in Fig. 3(b).

The point

at which A; = 0, is a saddle point for Re ‘¥(p). The Stokes curves Re ['¥(p) — ¥(p+)] = 0 intersect the real axis at
points

+ 2,21 [1 ) -
;( Wby )= —_ = O(B
P (B 3 3 X\

The partition of the interval I = [0, p,,] described in Section 3 consists of the intervals Iy = (ps, p,) and I; = [0,
Pl

We can write the input-output function in the interval I; as H(p) p; ey R w1th error O(p™).

In the interval I; the input-output function is given by Il(p) = = p*. The point p7 is a barrier point, which limits
the time the phase trajectories of system (1.2) stay in the neighbourhood of an unstable equilibrium position. For
solutions with the initial value of the follower force in I; the longest observed delay in stability loss is

2 1 9
AX)=p; “Par =3 IT(T:;—Z]

Note that A(Y) > 0asy — 5/9; A(Y) D ~asy— 1.

Curve 1 in Fig. 5 is the graph of a function I( - ) constructed in accordance with the above approximation for a
Ziegler system with parameters %g = 2.0, § = 30.0, 8 = 1.5, p = 1.0, ) = 0.8. The small circles along the curve
represent figures obtained by numerical integration of the equatjons of motion. In these computations, € = 107, 3
0:1(p) = 0x(p:) = 0.5, 1) = 92(p;) = 0. The chosen value of p, was the magnitude of the tracking force at the
first intersection (after the initial transient was completed) of a trajectory of system (1.2) with a sphere of radius
R = 0.33 with centre at the point in the phase space corresponding to the steady solution of the instantaneous
system. The results of the computations clearly confirm the estimate of the length of the stability loss delay obtained
by using the input—output function.

Example 2. Let us return once more to a system with sufficiently stiff hinges (x = »¢€). Let %y = 0.5, B = 3.25,
8 = 1.5, u = 1.0, x = 0.85. In that case the trivial solution x = 0 of the equations of motion (6.1) with € = 0 is
stable when p < p,, = 3.06.

Level curves of the function Re ¥(p) constructed by numerical integration of Eqs (3.3) are shown in Fig. 4(b).

As in Example 1, the point p, = 1.5 + 2.102 at which kl = 0 is a regular point of W¥(p). The Stokes curves Re
[¥(p) - ¥(p+)] = 0 cut the real axis at p; = 1.013 and p7 = 5.857.

The function W¥(p) experiences branching at the point p,, = 1.306 + 0.616i, where A, is a multiple root of the
characteristic equation (Section 4). The level curves Re[¥(p) — ¥(p,,)] = O cut the real axis at p; = 0.721 P =
1.214 andpl = 5.622.

There is no rigorous solution of the problem of constructing the input-output function II(-) when the
characteristic equatnon of the linearized system has multiple roots. We will determine the possible form of TI(-)
by assuming, as in [6], that in such a situation the systcm has a certain property. Namely, as applied to system (6.1),
when the follower force varies in the interval (p;,,p. ) a near-identical change of variables x — x, exists that converts
(6.1) into the system

x, =[Z(p)+0©®)]x, +O(x, ) (6.4)

which is satisfied when £ # 0 by the trivial solution x, = 0. The number p;,, = 0.506 satisfies the condition
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Re | A(p")dp’=0
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In the stability domain, the speed at which a typical phase trajectory of system (6.4) approaches the origin
is determined by the roots A, ; of the characteristic equation (6.2) (it can be verified that A, (p) < A5 (p) <
Re A, 2(p)). One can establish the following bound, characterizing the behaviour of a typical trajectory

l 4 ] 4 ’ ’
G explERe M (p’)dp’:ls '—E‘—% =C, exp[ERe | Ap(p"Ydp } (6.5)
i 0 Pi

provided that 0 < | x, (p;) | < C; (C;, C; and C; are positive constants).

The bound (6.5) fails to hold for solutions whose speed of approach to the origin is determined by the roots
A3(p) < Ay(p). The relative proportion of initial data generating such solutions is at most O(g"), where n is an
arbitrary positive number.

Inequality (6.5) implies the following formula for the input—output function I(-) when p; € I§ = (p-.., per)

T(p;)
Re | M(p)dp’'=0, Ti(p;)>p,, (6.6)
Pi

Indeed, if condition (6.5) is satisfied, the phase trajectory, having entered an e-neighbourhood of the origin at
p = p; + O(e | In € ), leaves that neighbourhood at p = I1(p;) + O(e|In e |).

Formula (6.6) may be transformed to the form of (3.2).

In the interval I] = [0, p_.], the function IT(- ) of system (6.1) takes the constant value p;.

The results of [4] enable us to justify the above definition of input—output-function only in the interval [ = (py,
Pe) C I Note that the point p7 € I, which is joined to p,, by an arc of a level curve of the function Re ¥(p), is
not a singular point of the function I1(-) given by (6.6).

Curve 2 in Fig. 5 is the graph of the proposed input-output function for the system we are studying. As in the
previous example, the small circles represent results of a numerical computation of stability loss delay (¢ = 1072).

Example 3. Consider a Ziegler system with the parameters specified in Section 2. The level curves of the function
Re ¥(p) for that system are shown in Fig. 4(c).

The point p, = 2.457 + 0.627; at which A; = 0 is a branch point for Re ¥(p), as shown in Fig. 5. The Stokes
curves Re [¥(p) - ¥(p.)] = 0 intersect the real axis at p; = 1.968 and p* = 5.491.

In the interval Iy = (p;, ec,) the input-output function in the case considered here maps a point p onto a point
M(p) of tlle interval (p,, p?) joined to p by an arc of a level curve of Re ¥(p). In the interval I; = [0, p}) we have
i) = p. [5}

A graph of the input—output function is shown in Fig. 5 (curve 3). The small circles are results of a numerical
computation of the stability loss delay (¢ = 107).

Note that the full pattern of the level curves in the neighbourhood of a branch point is not needed to construct
the input—output-function. In the notation of Section 5, the Stokes curves that cut the real axis at points p, and
p* will be p,B’ and p,C’, respectively.
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