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Stability loss delay in a Ziegler system is considered, on the assumption that the follower force is slowly increasing. An 
"input--output" ftmction is constructed, enabling the time at which stability loss occurs to be predicted, given the initial magnitude 
of the force. O 1997 Elsevier Science Ltd. All rights reserved. 

A delay in the loss of stability when the parameters are varied slowly was first observed for a model 
system [1]. A theory of the effect has been constructed for quite general systems [2-6]. Below we will 
consider the effect of a slow variation of the parameters on the dynamics of a modified Ziegler system 
[7]. Previous investigations of a Ziegler system using methods of classical bifurcation theory enabled 
many paradoxical features of non-conservative mechanical systems loaded by follower forces to be 
explained [8, 9]. 

We note that stability loss delay is not associated with the presence of any active controls that keep 
the system in the neighbourhood of an unstable steady state (of. [10]). 

1. DESCRIPTION OF THE SYSTEM. EQUATIONS OF MOTION 

We define a Ziegler system to be a two-dimensional hinged-rod mechanical system with two degrees 
of freedom subject to a slowly increasing follower force P (Fig. 1). It is assumed that when the rods are 
horizontal the spriaags in the hinges are in their natural, undeformed, state. The rods, all of the same 
length I and bearing point masses of masses M and m, are assumed to be weightless. 

As generalized coordinates of the system we use the angles ¢Pl and ~ by which the rods deviate from 
the horizontal. 

The dynamics of the system is described by the Lagrange equations 

+ 

T = I 2 {(m + M) ~o~ + m ~2 [2 cos(~o I - 92 ) ~°l+ ~°2 ]} / 2 

U=Ug +U e, Ug = gl[(m+ M)sinq~l +msincP2 ] 

u, = c{~ (l + ~o~) + (~ - ~%)2 [I + 8(~o~ - q~2)2 ]} / 2 

(1.1) 

where T is the kinetic energy of the system, U is its potential energy, which is the sum of the gravitational 
energy Ug and the energy of elastic deformation of the hinge springs Ue (c is the stiffness of the springs, 

is a parameter defining the non-linearity of the elastic properties of the springs, andg is the acceleration 
due to gravity), • is the dissipative function, which characterizes the dissipation of energy in the springs 
(b is the coefficient of dissipation), and Q1 and Q2 are generalized forces generated by the non- 
conservative follower force P. 

The angle between the line of action of P and the horizontal is proportional, with coefficient Z, to 
the angle of deflection of the second rod (0 < Z ~< 1). Follower forces of this type were considered, for 
example, in [11]. 

Formulae for the generalized forces may be found by computing the virtual work of P 
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Fig. 1. 

~A=(P, Srm)=QIStPI +Q2&P2; Qk ~ ~¢Pt ) 

After reduction we obtain 

QI =-IPlsin(xtp2 -tPl). Q2 = - I P I s i n ( x -  1)£02 

As an independent variable it is convenient to take dimensionless time x = t/l(c/m) v2. This enables 
us to rewrite the Lagrange equations (1.1) as follows: 

(1 + ~) (61 + cos(tpl - £02 ) £b2 + sin(tPl - £02 ) (02 + [$(2 (01 - £°2 ) + (1.2) 

+ 2¢Pl - £02 + 25[¢p~ + ((Pt - ¢p2)3 ] + x(1 + It) cos qh + P sin(ziP2 - ~°l ) = 0 

cos(q~l - £02 ) (bj + (b 2 -  sin(tpl - ¢P2 ) ( 02 + [$((02 - (01) - 

-(tPl - £02 )[1 + 28(q)! - ¢P2 )2 ] + x cos £02 + P sin(x - 1)(P2 = 0 

(I t=Mira,  x=lgmlc ,  [$=b/l(mc) ~ ,  p=JP[l/c)  

The dots in (1.2) and below denote derivatives with respect to dimensionless time x. 

Remark. The term "Ziegler system" is generally used for a simpler mechanical system, obtained from the above 
by  se t t ing  X = 1, 8 = x = 0 [7-9]. 

2. S T A B I L I T Y  LOSS DELAY IN A Z I E G L E R  SYSTEM 

If the magnitude p of the dimensionless follower force is fixed, system (1.2) has a family of steady 
solutions 

(01 = (02 = 0 ( 2 . 1 )  

qh = q~lo(×,[$,&~t,X,P), ~02 E q)20(X'[$ '~ ' IX'Z'P)  

which, when x - ~  0, tend to the trivial solution (01 = ~ = tPl = tp2 - O. 
I fp  ~ pc(x, ~t. 8, it, X), the solutions (2.1)are asymptotically stable; we will denote their domains of 

attraction in the phase space of the system by ~ (x ,  [I, 8, tt, Z, P)- 
One can define in the parameter space (x, 13, 5, Ia, Z) domains S1 and $2 with the following properties: 

if the parameters lie in $1, then whenp  = p,,  one of the roots of the characteristic equation of system 
(1.2), linearized in the neighbourhood of the stationary solution (2.1), is zero. If the parameters lie in 
$2, then when p = Pa, a pair of roots of the characteristic equation lie on the imaginary axis. 

Let us consider a Ziegler system with parameters in $2 in which the magnitude of the follower force 
is slowly increased 

p= pi +£'t, O<E',~I, O<<. pi < Pcr(X,~,b,~,X ) (2.2) 
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In that ease the phase trajectories of system (1.2) corresponding to initial conditions 

(~k (O),~k (0)) ~ ~(x,l~,~i, la, X, pi) 

will remain after the transient in an O(e)-neighbourhood of the stationary solution of the instantaneous 
system (the system with fixed p equal to the latter's current value) until the follower force reaches a 
certain value p0, which depends onpi and exceedspcr by a quantity of order 1; when that occurs the 
system will break away from the steady solution--there will be a rapid development of oscillations [2--6]. 
Thus, the stability loss is "delayed": for a long time ( -  e q )  the phase trajectories will not leave a small 
neighbourhood of lthe unstable solution. 

Numerical integration of Eqs (1.2) confirms the existence of a stability loss delay when the follower 
force is slowly increased. 

As an example, Fig. 2 shows how the behaviour of one of the generalized coordinates of a Ziegler system with 
parameters x = 0.1, 1] = 30.0, 8 -- 1.5, Ix = 1.0, ~ = 0.8 depends on the current value of the follower force (note 
that when e # 0 the raagnitude of the follower force may serve as "slow time" in system (1.2)). The computations 
were carried out for the following initial values of the follower force: 2.75, 2.25, 1.5, 0.5 (Fig. 2a--d). In all 
the parameter was taken as E = 10 -3. The curve S in Fig. 2 is the value of ~ in the stationary solution (2.1) of the 
instantaneous system; the vertical dashed line indicates the critical value of the follower forcepc, = 3.636 at which 
the steady solution (2.1) destabilizes and a stable limit cycle is formed (Andronoff-Hopf bifurcation). 

The computational results shown in Fig. 2, imply the following conclusion: the longer the trajectories are in a 
neighbourhood of a stable steady solution, the longer they will stay in the neighbourhood of the unstable solution. 
However, at a certairt value of the follower force (=5.5), oscillations will develop regardless of the time the phase 
trajectory spends in the neighbourhood of the stable solution. 

In systems with parameters in $1, there will be no delay of stability 10ss. Such systems will not be considered 
below. 

3. I N P U T - O U T P U T  F U N C T I O N  

We define the breakaway time to be the time x at which the phase trajectory first leaves the E a- 
neighbourhood of an unstable steady solution of the instantaneous system (0 < o < 1). 
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The input--output function II(.) relates the value of the follower force at x = 0 and its limiting value 
(as e ---> 0) at the time the phase trajectory breaks away from the steady solution for most initial data 
(~(0),  (Pk(0)) e ~(x, 13,/i, la, g, Pi), such that 

tk~=l (P~(O)+(q)k(O)-gl~o(X'~'&l't'X'Pi))2 } ~ >e ° 

It should be noted that the limiting value does not depend on o. 
To construct the input--output function, one has to study certain properties of the roots of the 

characteristic equation of system (1.2), linearized in the neighbourhood of the steady solution of family 
(2.1), for complex values of the parameterp [4, 5]. 

Let kl(p) be one of the two roots of the characteristic equation, which lie on the imaginary axis when 
P = Po- We will assume that Im ~,(p~,) < 0. 

We introduce the complex phase 

P 

~F(p) = J Zq(p')dp" (3.1) 
Per 

In the general case, ~P(p) is a many-valued function of a complex variable. Its typical branch points 
will be points at which the root 2q vanishes or becomes multiple. We will consider the branch of ~F(p) 
obtained by analytic continuation from the real axis. 

Bearing in mind the position of the level curves Re tp(p) = const in the complex p-plane, we will 
express the interval I = [0, c~,] as the union of an interval I0 containing Pc,, defined as the set of all 
points of the interval on level curves of Re ~F(p) that intersect the real axis twice (to the right and left 
ofp~,), and the interval/1 = No. 

On I 0 the input-output function mapsp onto the point H(p) on the real axis to the right ofpcr such 
that 

Re't'(p) = Re't'(rl(t,)) (3.2) 

If the independent variable in system (1.2) with e ¢ 0 is taken as the magnitude of the follower force, 
it can be proved, by analytic continuation.algng a path near the arc joiningp and II(p) on a level curve 
of Re ~P(p), that the solution for which thd initial value of the follower force is p will leave an O(e)- 
neighbourhood of the unstable solution when the follower force reaches a magnitude differing from 
II(p) by a quantity of the order of el in el [4]. 

The behaviour of H(-) in the interval I1 is determined by the nature of the singularity of the function 
~P(p) that obstructs the continuation of the family of arcs of level curves that cut the real axis twice and 
shrink to Pcr in the limit. 

Letp = u + iv. The curves Re ~P(u + iv) = const are phase trajectories of the system 

dulds =-Irn~. I/J~ql, dv/ds  = - R e k  I/IZ.~ I (3.3) 

where the independent variable s is a natural parameter of the curve. In complex form, system (3.3) 
may be written as dp/ds = -i~/I ~1 I. 

By numerical integration of system (3.3), one can determine the position of the level curves 
Re ~P(p) = const in the complexp-plane. 

In the neighbourhood of branch points, the pattern of the level lines becomes fairly complicated 
(Section 6, Examples 2 and 3). Therefore, for a correct interpretation of the computational results, one 
must have some idea of the typical behaviour of the level curves in that case (Sections 4 and 5). 

For some parameter values of Ziegler systems one can fred approximate expressions for the roots of 
the characteristic equation of the linearized system and obtain explicit formulae for the input-output 
function (Section 6, Example 1). 
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4. B E H A V I O U R  OF LEVEL CURVES IN THE N E I G H B O U R H O O D  OF 
A B R A N C H  POINT DUE TO THE MATRIX OF THE L I N E A R I Z E D  

SYSTEM HAVING MULTIPLE E IGE NVAL UE S.  

Consider the following system of differential equations depending on the complex parameterp 

dz/d~=F(z,p), ~C l, z ¢ C  ~ (4.1) 

Let z0(p) be a steady solution of system (4.1). Linearizing system (4.1) in the neighbourhood of this 
steady solution, we obtain 

dw OF 
(4.2) 

In the general case, the eigenvalues kl, • • •, ~ of the matrix Hw(p) are simple and only at special, 
isolated values o fp  does one obtain matrices with one double eigenvalue associated with a Jordan cell 
of order 2 [12, p. 222]. Denote the set of such numbersp by F. 

Suppose that Po.e F we have kl(P,,) = X2(Per) = X0 ~ 0. It follows from the normal form theorem 
for matrices dependent on a parameter [12, p. 217] that forp in some neighbourhood ofpcr there is a 
linear change of variables v = W(p)w, where W(p) is a non-singular matrix whose coefficients are analytic 
functions of p, that transforms system (4.2) to a linear system with matrix 

II ' It A 0 =  
a ( p  - Per ) + O(Ip - Per 12 ) ~'0 + b ( p  - P ¢ r )  + O(Ip - Per 12 ) 

AI = diag(2L3(P) ..... ~.n (P)) 

The eigenvalues ~,I(P), gz(p) are the roots of the characteristic equation det(Ao - XE) and may be 
expressed in the neighbourhood of pc,. as 

~.1.2 (P) = ~-0 + ~]a(p - Per) + O(Ip -- PerD 

ASpcr describes a closed contour, ~,I(P) and X2(p) are interchanged. 
To simplify the .subsequent calculations, we change in (4.1) to a new independent variable ~ = Xo~. 

After this change the multiple eigenvalue of H(pcr) will equal one. 
Define a complex phase 

~F( p )  = f ~'I (p ' )dp"  = ( p  - P~r ) + 2 tx(p - Per)312 + O(Ip -- P¢r I 2 ) 
.5 

Per 

where tx = "4(a)/7%. 
Let ~(p) = ~(P~r + p2), p ~ C~. The transformationp = p,~ + p 2 takes the level curves of the function 

Re ~(O) into those of_Re ~F(p). 
The condition Re ~(p) = const may be rewritten as follows: 

_ y2 + 2 [a i (x 3 _ 3xy2) + or2 (y3 _ 3x2y)] + O(x  4 + y4) = const x 2 

x=Rep ,  y=Imp,  tXl=Reot, ot2=Im(x 

We shah assume below that I al I # I ix2 I. 
Solving the equation Re ~F(x +/y)  = 0 fory, we obtain the equations of level curves passing through 

the point O as shown in Fig. 3(a) (curves aa' and bb') 
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y = _.+x -T- 2 (a  t + a2 )x 2 + O(x3 ) 

L e t a l  > i 0,2 I. The transformation p = p~, + p2 takes curves aa' and bb' into curves AA" and BB" 
with a cusp P~r (Fig. 3a). The level curves Re ~F(p) = const in the sector aOb become level curves of 
Re ~F(p) = eonst in the sectorAp~B. Level curves in the sectors aOb" and bOa" go into level curves in 
the sectors ApoB' andBp~A" that intersect the arcspoA' and pc,B', respectively. Level curves in the 
sector a'Ob' go into level curves in the sectorA~oc,B' that intersect the arcspoA andpoB. 

Given a different relationship between a 1 and 0.2, the position of the level curves of Re W(p) in the 
neighbourhood ofp,~ is either that shown in Fig. 3(a) or its mirror image with respect to the vertical axis. 

5. T H E  B E H A V I O U R  OF L E V E L  CURVES IN THE N E I G H B O U R H O O D  
OF A B R A N C H  P O I N T  OF A STEADY S O L U T I O N  

Suppose that a tp = p .  we have kl = 0. Applying a linear change of variables w = W(z-  z0(p)), where 
W is some non-singular matrix with constant coefficients, combined with a change of the independent 
variable analogous to that used in Section 4, we transform system (4.1) to the system 

d w  I = w 2 - ( p - p , ) +  ~, ~, aqwiwj +O([p-p, [[wl, iwl 3) 
d~ i=1 j=2 

dwk = ~. bkjwj+O(Ip-p.l, lw[2), k=2,----~ 
d~ j=2 

(5.1) 

where the (n - 1) x (n - 1) matrix }l bkj II is non-singular. 
The steady solution w0(P) of system (5.1) in the neighbourhood of p,  has the form 

Wlo(p) = ~ - Z  p, +O([p-p,D 

Wko(P)=ck(p-p,)+O([p-p, [~), k =2,--'n 
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Thus, p = p .  is a branch point of  second order for the function w0(P). 
The branching of  the steady solution impfies branching at p = p .  of the eigenvalues of  system (5.1), 

the latter being linearized in the neighbourhood of  that solution 

~., (p) = 2 p~S-~. + ~ ( p -  p,) + o(Ip-  p. I ~ )  

7.k(p)=~.k(p.)+'tk (~-p.)+O(Ip" p.I), k=~,n 

Let us consider the behaviour in the complex plane of the level curves of the function Re W(p), where 

• , 4 )~  + ~ ( p _ p , ) 2  +O(Ip I s~ 
V(p)= i ~.l(p )at, =-~(p-p. -p .  ) 

P, 

Let ~(p)  = W(/,. + p2), % ~ C 1. The condition Re ~(p) may be rewritten as follows: 

8 x~ _3y2x)+[~l(x4_6x2y 2 +y4)+4~2(xy  3 x3y)] (Ixl 5 +lyl 5)=const -~( - + 

x = R e p ,  y = I m p ,  [3t=Re ~, 1~2=Im13 

The level curves of Re if' = 0 are known as Stokes curves [13]. Solving Re ~ (x + / y )  = 0 for x, we 
obtain their equations 

x = ~ly 2 / 8+ O(lyJ 3) . 

x = +~f3y + 2(1~1 + ~f3[~2)y 2 + O(lYl 3 ) 

Let 131 > ~/(3)1 ~ I. Under  the transformation p = p .  + p 2, the Stokes curves Oa, Oh, Oc, Oa', 
Oh', Oc' of the function ~I'(p) pass into the Stokes curves p.A,p.B, p.C,p.A',p.B',p.C" of the ftmction 
W(p) (Fig. 3b). The level curves Re W(p) = const in the sector aOc" pass into level curves Re W(p) - 
const in the sectorAp.C" that intersect the Stokes curvesp,C andp,A'.  Level curves in the sectors aOb, 
bOc, a'Ob', b'Oc" pass into level curves in the sectorsAp.B, Bp,C,A'p~, B'p.C" that intersect the Stokes 
curves p.B', p.C', p.A, p.B, respectively. Level eurves in the sector cOa'  pass into level curves in the 
sector Cp.A" that do not intersect Stokes curves. 

The position of  the level curves of  Re ~F(p) in the neighbourhood of the point p = p .  for other relative 
positions of  131 and ~ is the same as that shown in Fig. 3(b) rotated by an angle of 2r&/3, where k = 0 
o r k =  -+1. 

6. E X A M P L E S  OF I N P U T - O U T P U T  F U N C T I O N S  
F O R  Z I E G L E R  S Y S T E M S  

Example 1. Wheal a Ziegler system has sufficiently stiff hinges, the friction in which is also sufficiently high, the 
parameters of the problem satisfy the conditions 

z ~ ~ ,  ~ , ~ l - l ' ~  1 

Let us develop approximate formulae for the input-output function of such a system. 
Setting x = ~ to fix our ideas, we rewrite the equations of motion (1.2) in quasi-linear form 

i = ~(P)X+~:l +E2 

x =l)~i,¢P2,~j,~21g, Zl = 0 ( 0 ,  lO, n :oo  
-=(P)= h3 ~ h32 h33 h34 

|h41 h42 h43 h44U 

~:2 = O(Ix 12 ) 

(6.1) 
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h31=-(3-p)l~t, h32=(2-p)l~t, h33=-3[~/g, h3,;=2~lg 

h4 ! = l -h31 ,  h 4 2 = - l + p ( l - x ) - h 3 2  

h43 =[~-h33, h44 = -1 -h34  

When e = 0 system (6.1) always has a trivial steady solution x -- 0. This means that we are not concerned here 
with a case of general position [4]. 

The characteristic equation of system (6.1), linearized in the neighbourhood of the solution x -= 0 (e = 0), is 

a0~L 4 +al~. 3 +a2~, 2 +a3~.+a 4 = 0 (6.2) 

ao=l.t, a l = ( 5 + g ) [ L  a2=~2 +5+g'(gZl+2)P 

a3=(2-3Zlp)~, a4=l-(3-p)zIP, Z I = I - x  

We have the following asymptotic formulae for the roots gl . . . . .  ~% of Eq. (6.2) 

~'3,4 = ~ [ - ( 5 + 1 " t ) + 4  25 +61a +g2 ' ]+O(l)  

If Z ~< 5/9 (X1 >~ 4/9), the stability loss is due to one of the roots of Eq. (6.2) crossing from the left half-plane 
into the fight half-plane through zero, and there is no delay of the stability loss. We will therefore assume from 
now on that Z is a point in the interval (5/9, 1) (Z1 ¢ (0. 4/9)). 

The critical value of the follower force is found from the condition Re ~q, 2 = 0 

Pcr (~,~,X) = 213Xi + 0([~ -1 ) 

Using the asymptotic formulae for ~q(p) and Per in (3.1), we obtain an approximate expression for the complex 
phase 

=0o " '  

0 . 0 ~  

2.0 

2 .0  

0.O 

0.0 2.0 4.0 6.0 

Fig. 4. 
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~F(P) = [ 5-I - P + ' ~ I P  - 

i 9 2 4 

23 

(6.3) 

The error of formula (6.3) is at most O(~-2). 
The formula Re ~(p) = const defines a family of hyperbolae in the complex plane. A general idea of the behaviour 

of the level curves Re ~F(p) ffi const may be derived from Fig. 4(a), which is shown for the case ~ = 0.8. 
Note that since the steady solution does not bifurcate at the point where ~.1 vanishes, the pattern of the level 

curves is quite different from that shown in Fig. 3(b). 
The point 

3 . [  1 9 
P '=2-+~]gm 4 

at which ~,1 = 0, is a saddle point for Re ~P(p). The Stokes curves Re [~P(p) - ~I'(p.)] = 0 intersect the real axis at 
points 

2 2 1 1 9 l 
3~1 3 ~ )~l ~,Zl 4) 

The partition of the interval I = [0,pcr] described in Section 3 consists of the intervals I0 = (P.,Pcr) and/1 = [0, 
p.]. 

We can write the input-output function in the interval I 0 as H(p) - 2per - p ,  with error O(J]-I). 
In the interval I1 the input--output function is given by FI(p) --- p+,. The point p + is a barrier point, which limits 

the time the phase trajectories of system (1.2) stay in the neighbourhood of an unstable equilibrium position. For 
solutions with the initial value of the follower force in/1 the longest observed delay in stability loss is 

A()O = P+ - Per = "3 ~11 ---~1,. 157, ̀ 

Note that A(g) --> 0 as g ~ 5/9; A(X) --> ~' as g --> 1. 
Curve 1 in Fig. 5 is the graph of a function II( .  ) constructed in accordance with the above approximation for a 

Ziegler system with parameters go = 2.0, ~ ffi 30.0, 8 = 1.5, ~t = 1.0, g = 0.8. The small circles along the curve 
represent figures ob~Lained by numerical integration of the equations of motion. In these computations, e = 10 -3, 
qh(Pi) = ¢2(Pi) = 0.5, qh(Pl) = q~2(Pi) ffi 0. The chosen value of p0 was the magnitude of the tracking force at the 
first intersection (after the initial transient was completed) of a trajectory of system (1.2) with a sphere of radius 
R = 0.33 with centre at the point in the phase space corresponding to the steady solution of the instantaneous 
system. The results of the computations clearly confirm the estimate of the length of the stability loss delay obtained 
by using the inpot-eutput function. 

Example 2. Let us return once more to a system with sufficiently stiff hinges (x = goe). Let go = 0.5, 13 = 3.25, 
S = 1.5, g = 1.0, g = 0.85. In that case the trivial solution x = 0 of the equations of motion (6.1) with e = 0 is 
stable whenp ~< Pcr = 3.06. 

Level curves of the function Re ~P(p) constructed by numerical integration of Eqs (3.3) are shown in Fig. 4(b). 
As in Example 1, the pointp.  = 1.5 + 2.102/at which gl = 0 is a regular point of ~P(p). The Stokes curves Re 

[~P(p) - ~P(p.)] = 0 cut the real axis atp~ = 1.013 andp .  + = 5.857. 
The function ~P(p) experiences branching at the point p~, = 1.306 + 0.616i, where ~,1 is a multiple root of the 

characteristic equation (Section 4). The level curves Re[~P(p) - ~P(P~r)] = 0 cut the real axis at p~ = 0.721, p0 = 
1.214 andp~ = 5.622. 

There is no rigorous solution of the problem of constructing the input-output function H( . )  when the 
characteristic equatiion of the linearized system has multiple roots. We will determine the possible form of II(.  ) 
by assuming, as in [6], that in such a situation the sy+stem has a certain property. Namely, as applied to system (6.1), 
when the follower force varies in the interval (p. . ,p.) ,  a near-identical change of variables x -~ x. exists that converts 
(6.1) into the system 

x,  = [--(p) + O(e)]x,  + O(Ix, 12) (6.4) 

which is satisfied when e # 0 by the trivial solution x. --- O. The nuraberp].  - 0.506 satisfies the condition 
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Re J ~.t (p ' )dp '  = 0 
p;. 

In the stability domain, the speed at which a typical phase trajectory of system (6.4) approaches the origin 
is determined by the roots Z1, 2 of the characteristic equation (6.2) (it can be verified that L4 (P) < k3 (P) < 
Re ~.1, 207)). One can establish the following bound, characterizing the behaviour of a typical trajectory 

. . . . .  ]~< lx*(p)l <~C2expI lRe f (p')dp'] Clexp[IRefL ~ Pi X~p )ap J~l~,~p~)' L ~ p~ x~ (6.5) 

provided that 0 < I x. (Pi) I <~ C3 (C1, C2 and (?3 are positive constants). 
The bound (6.5) fails to hold for solutions whose speed of approach to the origin is determined by the roots 

~(P)  < k4(P). The relative proportion of initial data generating such solutions is at most O(~n), where 11 is an 
arbitrary positive number. 

Inequality (6.5) implies the following formula for the input-output function II( .  ) whenpi ~ I~ = (P':.,Pcr) 

H(pi) 
Re S ~'1 (p')dp" -~ O, l ' l (p i)  > Pcr (6.6) 

Pi 
Indeed, if condition (6.5) is satisfied, the phase trajectory, having entered an e-neighbourhood of the origin at 

P = Pi + 0(~ I In ~ i), leaves that neighbourhood at p = H(Pi) + O(g I In e I)- 
Formula (6.6) may be transformed to the form of (3.2). 
In the interval ~ -- [0,p~.], the function H(.  ) of system (6.1) takes the constant valuep +. 
The results of [4] enable us to justify the above definition of input-output-function only in the interval I0 = (P~, 

Per) C F0. Note that the point p~ ~/'0, which is joined tOper by an arc of a level curve of the function Re tp(P), is 
not a singular point of the function H(. ) given by (6.6). 

Curve 2 in Fig. 5 is the graph of the proposed input-output function for the system we are studying. As in the 
previous example, the small circles represent results of a numerical computation of stability loss delay (e = 10-2). 

Examp/e 3. Consider a Ziegler system with the parameters specified in Section 2. The level curves of the function 
Re ~P(p) for that system are shown in Fig. 4(c)~ 

The pointp ,  ffi 2.457 + 0.627/at which ~,1 = 0 is a branch point for Re Ud(p), as shown in Fig. 5. The Stokes 
curves Re pP(p) - ~P(p.)] = 0 intersect the real axis a tp :  = 1.968 andp  + = 5.491. 

In the interval I0 ffi ( p : , ~ )  the input-output function in the case considered here maps a pointp onto a point 
Fl(p) of the interval (Pc,,P .) joined top  by an arc of a level curve of Re ~P(P). In the interval 11 = [0,p~) we have 
n(P) = v.* [51. 

A graph of the input-output function is shown in Fig. 5 (curve 3). The small circles are results of a numerical 
computation of the stability loss delay (~ = 10-3). 

Note that the full pattern of the level curves in the neighbourhood of a branch point is not needed to construct 
the input--output-function. In the notation of Section 5, the Stokes curves that cut the real axis at pointsp:  and 
p+ will be p ~ "  and p.C', respectively. 
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